Splitting Homomorphisms and the Geometrization Conjecture

نویسنده

  • ROBERT MYERS
چکیده

This paper gives an algebraic conjecture which is shown to be equivalent to Thurston’s Geometrization Conjecture for closed, orientable 3-manifolds. It generalizes the Stallings-Jaco theorem which established a similar result for the Poincaré Conjecture. The paper also gives two other algebraic conjectures; one is equivalent to the finite fundamental group case of the Geometrization Conjecture, and the other is equivalent to the union of the Geometrization Conjecture and Thurston’s Virtual Bundle Conjecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bruce Kleiner And

These are notes on Perelman’s papers “The Entropy Formula for the Ricci Flow and its Geometric Applications” [51] and “Ricci Flow with Surgery on Three-Manifolds’ [52]. In these two remarkable preprints, which were posted on the ArXiv in 2002 and 2003, Grisha Perelman announced a proof of the Poincaré Conjecture, and more generally Thurston’s Geometrization Conjecture, using the Ricci flow appr...

متن کامل

On Perelman ’ S Papers

These are notes on Perelman’s papers “The Entropy Formula for the Ricci Flow and its Geometric Applications” [40] and “Ricci Flow with Surgery on Three-Manifolds’ [41]. In these two remarkable preprints, which were posted on the ArXiv in 2002 and 2003, Grisha Perelman announced a proof of the Poincaré Conjecture, and more generally Thurston’s Geometrization Conjecture, using the Ricci flow appr...

متن کامل

Scalar Curvature and Geometrization Conjectures for 3-Manifolds

We first summarize very briefly the topology of 3-manifolds and the approach of Thurston towards their geometrization. After discussing some general properties of curvature functionals on the space of metrics, we formulate and discuss three conjectures that imply Thurston’s Geometrization Conjecture for closed oriented 3-manifolds. The final two sections present evidence for the validity of the...

متن کامل

Geometrization of the Strong Novikov Conjecture for residually finite groups

In this paper, we prove that the Strong Novikov Conjecture for a residually finite group is essentially equivalent to the Coarse Geometric Novikov Conjecture for a certain metric space associated to the group. As an application, we obtain the Coarse Geometric Novikov Conjecture for a large class of sequences of expanders.

متن کامل

THE GEOMETRIZATION CONJECTURE AFTER R. Hamilton and G. Perelman

This is the text of a Lagrange Lecture given in the mathematics department of the University of Torino. It aims at describing quite briefly the main milestones in the proof of the Geometrization conjecture due to G. Perelman using R. Hamilton’s Ricci Flow. It is by no means exhaustive and intends to be a rough guide to the reading of the detailed literature on the subject. Extended notes have b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999